Galois Scaffolds And Galois Module Structure For Totally Ramified Extra-Special *p*-Extensions

Hopf Algebras & Galois Module Theory 2022

Paul Schwartz & Kevin Keating

Stevens Institute of Technology & University of Florida

June 1, 2022

Notation

 $\mathbf{F}(\vec{v}) = (a_1^p, ..., a_n^p).$

 $(v_K(0)=\infty)$. Notationally we have the following: $e_K=v_K(p)$ is the absolute ramification index; $\mathfrak{D}_K=\{x\in K:v_K(x)\geq 0\}$ is the ring of integers; $\mathfrak{M}_K=\{x\in K:v_K(x)\geq 1\}$ is the maximal ideal of \mathfrak{D}_K ; π_K is a uniformizer for K. If $K_0\subseteq\cdots\subseteq K_n$ is a tower of totally ramified fields we may replace the subscript K_i by the subscript i for $0\leq i\leq n$ giving us $v_i,\ e_i,\ \mathfrak{D}_i,\ \mathfrak{M}_i$ and π_i . If K is a local field with residue characteristic p, and $\vec{v}=(a_1,...,a_n)$, we let

Given a local field K, we let $v_K: K \to \mathbb{Z} \cup \{\infty\}$ be the normalized valuation on K

4 0 1 4 2 1 4 2 1 2 1 0 0 0

Ramification groups

Let L/K be a Galois extension of degree p^n of local fields with Galois group G. For $i \geq -1$ we define the i-th ramification subgroup by $G_i = \{\sigma \in G : v_L((\sigma-1)\pi_L) \geq i+1\}$. It is well known that G_i is a normal subgroup of G and the quotient G_i/G_{i+1} is an elementary abelian p-gorup. This allows us to choose a composition series $G = H_0 \supset H_1 \supset ... \supset H_{n-1} \supset H_n = \{1\}$ such that $H_i/H_{i+1} \cong C_p$ for $0 \leq i \leq n-1$ and $\{G_i : i \geq -1\} \subseteq \{H_i : 0 \leq i \leq n\}$ [BE13].

Ramification numbers

For $0 \le i \le n-1$, choose $\sigma_{i+1} \in H_i \setminus H_{i+1}$. Then set $b_i = v_L((\sigma_i - 1)\pi_L) - 1$ for $1 \le i \le n$, this integer is independent of the choices made and we call it the *i*-th lower ramification number.

The upper ramification number $u_1, ..., u_n$ are defined recursively by

$$u_1 = b_1, u_i = u_{i-1} + \frac{b_i - b_{i-1}}{p^{i-1}} \text{ for } 2 \le i \le n \text{ [BE18]}.$$

Defining Galois scaffold

Let K_0 be a local field with residue characteristic p.

Assume K_n/K_0 is a totally ramified extension of local fields of degree p^n whose lower ramification numbers are relatively prime to p and fall into one residue class modulo p^n represented by $0 < b < p^n$.

Let $\mathbb{S}_{p^n}=\{0,1,\ldots,p^n-1\}$. Define $\mathfrak{a}:\mathbb{Z}\to\mathbb{S}_{p^n}$ by $\mathfrak{a}(j)\equiv -jb^{-1}\mod p^n$ [BCE18]. For $0\leq i\leq n-1$, let $\mathfrak{a}(j)_{(i)}$ denote the *i*-th digit in the *p*-adic expansion of $\mathfrak{a}(j)$.

Put a partial order \leq on \mathbb{S}_{p^n} defined by $s \leq t$ if and only if $s_{(i)} \leq t_{(i)}$ for each $0 \leq i \leq n-1$, where $s = \sum_{i=1}^n s_{(n-i)} p^{n-i}$ and $t = \sum_{i=1}^n t_{(n-i)} p^{n-i}$ are the p-adic expansions of s and t [BCE18].

Defining Galois scaffold II

Let $G = Gal(K_n/K_0)$. Given an integer $\mathfrak{c} \geq 1$, two things are required for a Galois scaffold of precision \mathfrak{c} [BCE18]:

- 1. For each $t \in \mathbb{Z}$ an element $\lambda_t \in K_n$ such that $v_n(\lambda_t) = t$ and $\lambda_s \lambda_t^{-1} \in K_0$ whenever $s \equiv t \mod p^n$.
- 2. Elements $\Psi_1, \Psi_2, \dots, \Psi_n$ in the augmentation ideal $(\sigma 1 : \sigma \in G)$ of $K_0[G]$ such that for each $1 \leq i \leq n$ and $t \in \mathbb{Z}$

$$\Psi_i \lambda_t \equiv \left\{ \begin{array}{cc} u_{i,t} \lambda_{t+p^{n-i}b_i} & \mod \lambda_{t+p^{n-i}b_i} \mathfrak{M}_n^{\mathfrak{c}} & \text{if } \mathfrak{a}(t)_{(n-i)} \geq 1 \\ 0 & \mod \lambda_{t+p^{n-i}b_i} \mathfrak{M}_n^{\mathfrak{c}} & \text{if } \mathfrak{a}(t)_{(n-i)} = 0 \end{array} \right.$$

where $u_{i,t} \in K$ and $v_K(u_{i,t}) = 0$.

Galois Module Structure i

Let $((\lambda_t)_{t \in \mathbb{Z}}, (\Psi_i)_{i=1}^n)$ be a Galois scaffold for L/K of precision \mathfrak{c} . Let $0 < b < p^n$ satisfy $b \equiv b_n \mod p^n$. For each $s \in \mathbb{S}_{p^n}$, let

$$\Psi^{(s)} = \Psi_n^{s_{(0)}} \Psi_{n-1}^{s_{(1)}} \cdots \Psi_1^{s_{(n-1)}} \in K[G]$$

$$\mathfrak{b}(s) = \sum_{i=1}^n s_{(n-i)} p^{n-i} b_i$$

$$d(s) = \left\lfloor \frac{\mathfrak{b}(s) + b}{p^n} \right\rfloor$$

$$w(s) = \min \{ d(s+j) - d(j) : j \leq p^n - 1 - s \}$$

where $s = \sum_{i=1}^{n} a_{(n-i)} p^{n-i}$ is the *p*-adic expansion of *s* [BCE18].

Galois Module Structure ii

Theorem (Byott, Childs, Elder, 2018)

- Suppose $\mathfrak{c} \geq 1$. Then $\{\pi^{-w(s)}\Psi^{(s)}: s \in \mathbb{S}_{p^n}\}$ is an \mathfrak{D}_K -basis for $\mathfrak{A}_{L/K}$. If w(s) = d(s) for all $s \in \mathbb{S}_{p^n}$, then \mathfrak{D}_L is free over $\mathfrak{A}_{L/K}$. Moreover, $\mathfrak{D}_L = \mathfrak{A}_{L/K} \cdot \rho$ for any $\rho \in L$ with $v_L(\rho) = b$.
- 2 Assume $\mathfrak{c} \geq p^n + b$. Then \mathfrak{O}_L is free over $\mathfrak{A}_{L/K}$ if and only if w(s) = d(s) for all $s \in \mathbb{S}_{p^n}$. Moreover, if \mathfrak{O}_L is free over $\mathfrak{A}_{L/K}$, then $\mathfrak{O}_L = \mathfrak{A}_{L/K} \cdot \rho$ for any $\rho \in L$ with $v_L(\rho) = b$ [BCE18, Theorem 3.1].

Theorem (Byott, Childs, Elder; 2018)

Let L/K be a totally ramified Galois extension of degree p^n where $n \geq 2$. Assume the lower ramification numbers of L/K are relatively prime to p and fall into one residue class represented by $0 < b < p^n$. Assume that L/K possesses a Galois scaffold of precision $\mathfrak{c} \geq p^n + b$. Then \mathfrak{D}_L is free over $\mathfrak{A}_{L/K}$ if and only if $b \mid p^n - 1$ [BCE18, Theorem 4.8].

Extra-Special *p*-Groups

An extra-special p-group is a p-group G of order p^{2n+1} for some $n \ge 1$ such that $Z(G) \cong C_p$ and $G / Z(G) \cong C_p^{2n}$. When p is odd there are two classes of extra-special p-groups:

- (1) Exponent p, denoted $\mathbb{H}_{2n+1}(\mathbb{F}_p)$
- (2) Exponent p^2 , denoted $\mathbb{M}_{2n+1}(\mathbb{F}_p)$.

We use the theory of MacKenzie and Whaples [MW56] to construct totally ramified extra-special *p*-extensions for odd primes. Then we use the work of Byott, Elder, and Keating in [BE18] and [EK22], to construct Galois scaffolds for our extensions.

The two extra-special groups of order 8 are the quaternions Q_8 and the dihedral group D_8 which both have exponent 4. In the case p=2 and n=1, both of our constructions produce D_8 -extensions [Bla99].

Exponent p

If B is a commutative ring with 1, we define an algebraic group

$$\mathbb{H}_{2n+1}(B)=egin{pmatrix} 1 & ec{a} & c \ ec{0} & 1 & ec{b} \ 0 & ec{0} & 1 \end{pmatrix} \leq GL_{n+2}(B)$$

where \vec{a} is a $1 \times n$ row vector with entries in B, \vec{b} is a $n \times 1$ column vector with entries in B, and $c \in B$.

The group

$$\mathbb{H}_3(\mathbb{F}_p) = egin{pmatrix} 1 & * & * \ 0 & 1 & * \ 0 & 0 & 1 \end{pmatrix}$$

is commonly referred to as the Heisenberg group [EK20].

Heisenberg extensions in characteristic p

Suppose $\vec{A} := (a_1, \ldots, a_{2n+1}) \in \mathbb{H}_{2n+1}(K_0)$ such that $a_i \notin \wp(K_0)$. Choose $\vec{X} := (x_1, \ldots, x_{2n+1}) \in \mathbb{H}_{2n+1}(K_0^{sep})$ such that $\mathbf{F}(\vec{X}) = \vec{X} * \vec{A}$ that is to say $x_i^p - x_i = a_i$ for $1 \le i \le 2n$, and

$$x_{2n+1}^p - x_{2n+1} = a_{2n+1} + \sum_{i=1}^n a_{n+i}a_i.$$

For any $ec{B} \in \mathbb{H}_{2n+1}(\mathbb{F}_p) \subseteq \mathbb{H}_{2n+1}(K_0)$ we have

$$\mathbf{F}(\vec{B}*\vec{X}) = \mathbf{F}(\vec{B})*\mathbf{F}(\vec{X}) = B*(\vec{X}*\vec{A}) = (\vec{B}*\vec{X})*\vec{A}.$$

So $\vec{B}*\vec{X}$ is a solution to $\mathbf{F}(\vec{T})=\vec{T}*\vec{A}$ for all $\vec{B}\in\mathbb{H}_{2n+1}(\mathbb{F}_p)$. Let $a\in K_0$ such that $p\nmid v_0(a)<0$. Choose $\omega_1,\ldots,\omega_{2n+1}\in K_0$ such that $0=v_0(\omega_1)\geq\ldots\geq v_0(\omega_{2n+1})$. For $1\leq i\leq 2n+1$ set $a_i=a\omega_i^{p^{2n}}$ and set $\vec{A}=(a_1,\ldots,a_{2n+1})$. Assume that $v_0(a_{2n+1})< v_0(a_{2n+1}^2)$.

Heisenberg extensions in characteristic p II

Choose $\vec{X} := (x_1, \dots, x_{2n+1}) \in \mathbb{H}_{2n+1}(K_0^{sep})$ such that $\mathbf{F}(\vec{X}) = \vec{X} * \vec{A}$. That is $x_i^p - x_i = a_i$ when $1 \le i \le 2n$ and

$$x_{2n+1}^p - x_{2n+1} = a_{2n+1} + \sum_{j=1}^n a_{n+j} x_j.$$

For $1 \le i \le 2n + 1$, set $K_i = K_{i-1}(x_i)$.

Theorem (Keating, S; 2022)

 K_{2n+1}/K_0 is a totally ramified $\mathbb{H}_{2n+1}(\mathbb{F}_p)$ -extension with upper ramification numbers $u_i = -v_0(a_i)$ for $1 \le i \le 2n+1$. Moreover, K_{2n+1}/K_0 possesses a Galois scaffold of precision $\mathfrak{c} = b_{2n+1} - p^{2n}(u_{2n} + u_n) \ge p^{2n} + b_{2n}$.

Heisenberg extensions in characteristic 0 I

Let $a \in K_0$ such that $p \nmid v_0(a)$ and $-\frac{pe_0}{p-1} < v_0(a) < 0$. Choose $\omega_1, ..., \omega_{2n+1} \in K_0$ such that $0 = v_0(\omega_1) \ge v_0(\omega_2) \ge ... \ge v_0(\omega_{2n+1})$. For $1 \le i \le 2n+1$ set $a_i = a\omega_i^{p^{2n}}$ and set $\vec{A} = (a_1, \ldots, a_{2n+1})$. Assume that $v_0(a_{2n+1}) < v_0(a_{2n}^2 a_n)$, and $v_0(p^{p^2}a_{2n+1}^{p(p-1)}a_{2n}^p a_n) > 0$.

Heisenberg extensions in characteristic 0 II

Choose
$$\vec{X} := (x_1, \dots, x_{2n+1}) \in \mathbb{H}_{2n+1}(K_0^{sep})$$
 such that $\mathbf{F}(\vec{X}) = \vec{X} * \vec{A}$. That is $x_i^p - x_i = a_i$ when $1 \le i \le 2n$, $x_{2n+1}^p - x_{2n+1} = a_{2n+1} + \sum_{i=1}^n a_{n+j} x_j$ when $i = 2n+1$.

For $1 \le i \le 2n + 1$, let $K_i = K_{i-1}(x_i)$.

Theorem (Keating, S; 2022)

 K_{2n+1}/K_0 is a totally ramified $\mathbb{H}_{2n+1}(\mathbb{F}_p)$ -extension with upper ramification numbers $u_i = -v_0(a_i)$ for $1 \le i \le 2n+1$. Moreover, K_{2n+1}/K_0 possesses a Galois scaffold of precision

$$\mathfrak{c}=\min\{b_{2n+1}-p^{2n}(u_{2n}+u_n),p^{2n+1}e_0+b_{2n+1}-p^{2n+1}u_{2n+1}\}\geq p^{2n}+b_{2n}.$$

Exponent p^2

Let B be a commutative ring with 1. Let

$$D(X, Y) = \frac{X^{p} + Y^{p} - (X + Y)^{p}}{p} = \sum_{i=1}^{p-1} p^{-1} \binom{p}{i} X^{p-i} Y^{i} \in \mathbb{Z}[X, Y].$$

Define an operation * on B^{2n+1} by

$$(X_1,...,X_{2n},X_{2n+1})*(Y_1,...,Y_{2n},Y_{2n+1})=(Z_1,...,Z_{2n},Z_{2n+1})$$

where

$$Z_i = \begin{cases} X_i + Y_i, & \text{for } 1 \le i \le 2n \\ X_{2n+1} + Y_{2n+1} + X_n^p Y_{2n} + D(X_n, Y_n) + \sum_{j=1}^{n-1} X_j Y_{n+j} & \text{for } i = 2n+1. \end{cases}$$

Let $\mathbb{M}_{2n+1}(B)$ denote the group $(B^{2n+1},*)$.

The group $\mathbb{M}_3(\mathbb{F}_p)$

Note that $\mathbb{M}_3(\mathbb{F}_p)\cong \langle x,y|x^{p^2}=1=y^p,yxy^{-1}=x^{1+p}\rangle\cong C_{p^2}\rtimes C_p$. So $\mathbb{M}_3(\mathbb{F}_p)$ is a *metacyclic* group. Now we will call \mathbb{M}_{2n+1} the *generalized metacyclic group*.

Generalized metacyclic extension in characteristic p

As was the case with \mathbb{H}_{2n+1} , it is easy to construct $\mathbb{M}_{2n+1}(\mathbb{F}_p)$ -extensions in characteristic p. Now we construct $\mathbb{M}_{2n+1}(\mathbb{F}_p)$ -extensions that possess a scaffold. Choose $a \in K_0$ such that $p \nmid v_0(a) < 0$. Choose $\omega_1, \ldots, \omega_{2n+1} \in K_0$ such that $0 = v_0(\omega_1) \geq \ldots \geq v_0(\omega_{2n+1})$. For $1 \leq i \leq 2n+1$, set $a_i = a\omega_i^{p^{2n}}$ and set $\vec{A} = (a_1, \ldots, a_{2n+1})$. Assume that $v_0(a_{2n+1}) < \min\{v_0(a_{2n}^2 a_n), v_0(a_{2n} a_n^p)\}$.

Generalized metacyclic ext in characteristic p II

Choose $\vec{X} := (x_1, \dots, x_{2n+1}) \in \mathbb{M}_{2n+1}(\mathbb{F}_p)$ such that $\mathbf{F}(\vec{X}) = \vec{X} * \vec{A}$. That is $x_i^p - x_i = a_i$ for $1 \le i \le 2n$, and

$$x_{2n+1}^p - x_{2n+1} = a_{2n+1} - a_{2n}x_n^p - \sum_{j=1}^{n-1} a_{n+j}x_j - D(x_n, a_n).$$

For $1 \le i \le 2n + 1$, let $K_i = K_{i-1}(x_i)$.

Theorem (Keating, S; 2022)

 K_{2n+1}/K_0 is a totally ramified $\mathbb{M}_{2n+1}(\mathbb{F}_p)$ -extension with upper ramification numbers $u_i = -v_0(a_i)$ for $1 \le i \le 2n+1$. Moreover, K_{2n+1}/K_0 possesses a Galois scaffold of precision

$$\mathfrak{c} = \min\{b_{2n+1} - p^{2n}(u_{2n} + u_n), b_{2n+1} - (p-1)p^{2n}u_n\} \ge p^{2n} + b_{2n}.$$

Generalized metacyclic extensions in characteristic 0

Let $a \in K_0$ such that $p \nmid v_0(a)$ and $-\frac{pe_0}{p-1} < v_0(a) < 0$. Choose $\omega_1, ..., \omega_{2n+1} \in K_0$ such that $0 = v_0(\omega_1) \geq v_0(\omega_2) \geq ... \geq v_0(\omega_{2n+1})$. For $1 \leq i \leq 2n+1$ set $a_i = a\omega_i^{p^{2n}}$ and set $\vec{A} = (a_1, ..., a_{2n+1})$. Assume that $v_0(a_{2n+1}) < \min\{v_0(a_{2n}^2a_n), v_0(a_{2n}a_n^p)\}$ and

$$v_0(p^p a_{2n+1}^{p-1} a_{2n}^p a_n) > 0.$$

Generalized metacyclic ext in characteristic 0 II

Choose $\vec{X} := (x_1, \dots, x_{2n+1}) \in \mathbb{M}_{2n+1}(K_0^{sep})$ such that $\mathbf{F}(\vec{X}) = \vec{X} * \vec{A}$. That is $x_i^p - x_i = a_i$ for $1 \le i \le 2n$ and

$$x_{2n+1}^p - x_{2n+1} = a_{2n+1} - a_{2n}x_n^p - \sum_{j=1}^{n-1} a_{n+j}x_j - D(x_n, a_n).$$

For $1 \le i \le 2n + 1$, set $K_i = K_{i-1}(x_i)$.

Theorem (Keating, S; 2022)

 K_{2n+1}/K_0 is a totally ramified \mathbb{M}_{2n+1} -extension with upper ramification numbers $u_i = -v_0(a_i)$ for $1 \le i \le 2n+1$. Moreover, K_{2n+1}/K_0 possesses a Galois scaffold of precision

$$c = \min\{p^{2n+1}e_0 + b_{2n+1} - p^{2n+1}u_{2n+1}, b_{2n+1} - p^{2n+1}u_n, b_{2n+1} - p^{2n}(u_n + u_{2n})\} \ge p^{2n} + b_{2n}.$$

Bondarko-Dievsky

Now we restrict to the case Char(K) = 0.

Lemma (Bondarko, Dievsky; 2009)

Let L/K be a totally ramified Galois (non-cyclic) p-extension of degree $q=p^n$ such that \mathfrak{O}_L is free over $\mathfrak{A}_{L/K}$. If the ramification numbers for L/K are congruent to -1 modulo q, then $\mathfrak{A}_{L/K}$ does not contain any non-trival idempotents [BD09, Lemma 2.18].

Theorem (Bondarko, Dievsky; 2009)

Let G be a non-cyclic p-group, and $\mathfrak{A} \subseteq K[G]$ an \mathfrak{D}_K -order. The following are equivalent:

- there exits a totally ramified Galois extension L/K such that $\mathfrak{A}_{L/K} = \mathfrak{A}$, \mathfrak{D}_L is free over $\mathfrak{A}_{L/K}$, $\mathfrak{A}_{L/K}$ does not contain any non-trivial idempotents, and the different $\mathfrak{D}_{L/K}$ is generated by an element of K;
- ② $\mathfrak A$ is a colocal comonogenic Hopf algebra [BD09, Theorem 3.11].

Paul Schwartz (Stevens) Extra-Special p-Extensions June 1, 2022 21/25

An Example

Let
$$K_0 = \mathbb{Q}_3$$
 $(i, \sqrt[113]{3})$, so $p = 3$ and $e_0 = 113$. Let $b = p^3 - 1 = 26$, $a_1 = \pi_0^{-b}$, $a_2 = i^9 a_1 = i a_1$, and $a_3 = (\pi_0^{-10})^9 a_1$. Let x_1, x_2, x_3 satisfy
$$x_1^3 - x_1 = a_1$$
$$x_2^3 - x_2 = a_2$$
$$x_3^3 - x_3 = a_3 + a_1 a_2 + a_2 x_1 + D(a_1, x_1),$$

and let $K_3=K_0(x_1,x_2,x_3)$. It is the case that K_3/K_0 is a totally ramified $\mathbb{M}_3[\mathbb{F}_3]$ -extension which possesses a Galois scaffold of precision $\mathfrak{c}=134$. The lower ramification numbers for K_3/K_0 are $b_1=b_2=26$ and $b_3=836$ with residue -1 modulo 9 represented by b. Since the precision is greater than $p^3+b=53$, it follows from the theory of Byott, Childs and Elder that \mathfrak{D}_3 is free over \mathfrak{A}_{K_3/K_0} . Now it follows from the Bondarko-Dievsky theorem that \mathfrak{A} is a Hopf algebra. One can try to use the \mathfrak{D}_0 -basis for \mathfrak{A}_{K_3/K_0} constructed in [BCE18, Theorem 3.1(1)], but it seems to be very complicated.

THANK YOU

References I

- Nigel P. Byott, Lindsay N. Childs, and G. Griffith Elder, *Scaffolds and generalized integral module structure*, Annales De L'Institut Fourier **68** (2018), no. 3, 965–1010.
- M.V. Bondarko and A.V. Dievsky, *Non-abelian associated orders of wildly ramified extensions*, Journal Of Mathematical Sciences **156** (2009), no. 6.
- Nigel P. Byott and G. Griffith Elder, *Galois scaffolds and Galois module structure in extensions of characteristic p local fields of degree p*², Journal of Number Theory **133** (2013), 3598–3610.
- _____, Sufficient conditions for large Galois scaffolds, Journal of Number Theory **182** (2018), 95–130.
- Simon R Blackburn, *Groups of prime power order with derived subgroup of prime order*, Journal of Algebra **219** (1999), no. 2, 625–657.
- Griffith Elder and Kevin Keating, Generic ramification in generalized Heisenberg extensions, pre-print (2020).

References II

